
9 More on the 1D Heat Equation

9.1 Heat equation on the line with sources: Duhamel’s
principle

Theorem: Consider the Cauchy problem

∂u
∂t

= D ∂2u
∂x2

+ F (x, t) , on |x| <∞, t > 0

u(x, 0) = f(x) for |x| <∞
(1)

where f and F are defined and integrable on their domains. Let S(x, t) =
1

2
√
πDt

e−x
2/4Dt be the usual fundamental solution to the heat equation. Then

the solution to (1) is given by

u(x, t) =

∫ ∞
−∞

S(x− y, t)f(y)dy +

∫ t

0

∫ ∞
−∞

S(x− y, t− τ)F (y, τ)dydτ

=
1

2
√
πDt

∫ ∞
−∞

e−(x−y)
2/4Dtf(y) dy

+

∫ t

0

1

2
√
πD(t− τ)

∫ ∞
−∞

e−(x−y)
2/4D(t−τ)F (y, τ) dydτ . (2)

For motivation consider the ODE case of a “forced” IVP:

dy
dt

+ ay = F (t), for t > 0, a is a constant
y(0) = 0

(3)

It is straightforward to apply the integrating-factor method, or Laplace trans-
form method to obtain

y(t) =

∫ t

0

e−a(t−τ)F (τ)dτ. (4)

Now consider a one-parameter set of homogeneous equations

dw
dt

+ aw = 0, for t > 0
w(0) = w(0; τ) = F (τ)

(5)
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Here τ is just a dummy parameter with respect to this problem since the
derivative is respect to t; the solution to this problem, for each τ , is w(t) =
w(t; τ) = F (τ)e−at. By observation the solution (4) to the source problem
(3) is the integral of the solution w to the homogeneous problem (5) with t
replaced by t− τ :

y(t) =

∫ t

0

w(t− τ ; τ)dτ.

Put another way, the solution to the nonhomogeneous equation, with homo-
geneous initial condition, is deduced from the solution to the homogeneous
equation (with appropriately parameterized nonhomogeneous initial condi-
tion). This is Duhamel’s principle, and it is fairly generalizable. So, can this
idea carry over to diffusion equations? From previous work solving the heat
equation problem we know that the problem

wt = Dwxx on |x| <∞, t > 0

w(x, 0; τ) = F (x, τ) on |x| <∞

has the solution w(x, t; τ) =
∫∞
−∞ S(x− y, t)F (y, τ)dy

(again, τ is just a parameter).
Now consider the problem

ut = Duxx + F (x, t) on |x| <∞, t > 0

u(x, 0) = 0 in |x| <∞.
(6)

By applying the above logic from the ODE case, the solution u(x, t) should
be the time integral of w with t replaced by t− τ :

u(x, t) =

∫ t

0

w(x, t− τ ; τ)dτ =

∫ t

0

∫ ∞
−∞

S(x− y, t− τ)F (y, τ)dydτ (7)

By taking derivatives of (7) it is straight forward to verify that (7) is
a solution to (6). Since (2) represents the solution to (6) plus the solution
to the IVP with homogeneous equation, non-zero initial condition, then, by
linearity, (2) is the sought after solution to (1).

Example 1 : Solve

∂u
∂t

= ∂2u
∂x2

+ xt on |x| <∞, t > 0

u(x, 0) = 0 for |x| <∞
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By the theorem, u(x, t) =
∫ t
0

∫∞
−∞

e−(x−y)2/4(t−τ)

2
√
π(t−τ)

yτdydτ .

Note that, with r = (x− y)/2
√
t− τ ,∫ ∞

−∞

e−(x−y)
2/4(t−τ)

2
√
π(t− τ)

ydy =
1√
π

∫ ∞
−∞

(x− 2r
√
t− τ)e−r

2

dr

=
x√
π

∫ ∞
−∞

e−r
2

dr − 2
√
t− τ√
π

∫ ∞
−∞

re−r
2

dr

= x

since the first integral in the last expression is
√
π, and the last integral is 0

(the integrand is an odd function on a symmetric interval...or just integrate
it directly by substitution). Hence, u(x, t) =

∫ t
0
xτdτ = xt2/2.

Example 2 : Solve

∂u
∂t

= ∂2u
∂x2

+ 2x sin(t) on |x| <∞, t > 0

u(x, 0) = e−a|x| for |x| <∞

Write u(x, t) = u(1)(x, t) + u(2)(x, t), where u(i), i = 1, 2 solve the problems

∂u(1)

∂t
= ∂2u(1)

∂x2
on |x| <∞, t > 0

u(1)(x, 0) = e−a|x| for |x| <∞

and

∂u(2)

∂t
= ∂2u(2)

∂x2
+ 2x sin(t) on |x| <∞, t > 0

u(2)(x, 0) = 0 for |x| <∞ .

By using the solution representation to the regular (homogeneous) heat
equation Cauchy problem, the reader should verify that

u(1)(x, t) =
ea

2t

√
π
{e−ax

∫ ∞
a
√
t−x/2

√
t

e−r
2

dr + eax
∫ −a√t−x/2√t
−∞

e−r
2

dr}.
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For the u(2) problem, consider the problem

∂w
∂t

= ∂2w
∂x2

on |x| <∞, t > 0

w(x, 0) = 2x sin(τ) for |x| <∞.

Again, from the solution to the Cauchy problem, w(x, t) = w(x, t; τ) =
2x sin(τ). By Duhamel’s principle,

u(2)(x, t) =

∫ t

0

2x sin(t− τ)dτ = 2x

∫ t

0

sin(t′)dt′ = 2x(1− cos(t)).

Summary: The point of this section is knowing solution form (2) to the
IVP (1).

Exercises

1. Consider

ut = Duxx + 3e−x
2

on |x| <∞, t > 0

u(x, 0) = sech(2x) for |x| <∞

It is rare that the integrals associated with the solution of Cauchy
heat equation problems can be calculated out analytically, so in this
case write out the solution from the theorem without carrying out the
specific integrations.

2. Let F (x, τ) be an arbitrary bounded, continuous function on R2. Define

v(x, t, τ) :=

∫ ∞
−∞

e−(x−y)
2/4D(t−τ)

2
√
πD(t− τ)

F (y, τ)dy for t > τ

Verify that u(x, t) =
∫ t
0
v(x, t, τ)dτ satisfies ut = Duxx + F (x, t).

3. Consider the Cauchy problem

ut = uxx − a on |x| <∞, t > 0, with a being a constant

u(x, 0) = H(x) for |x| <∞, where H(·) is the Heaviside function
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First, solve this using linearity and Duhamel’s principle. Second, solve
directly by finding a transformation that reduces the problem to a
homogeneous heat equation problem.

4. Consider ut = uxx + F (x, t), |x| < ∞, t > 0, where now F (x, t) ≥ 0
everywhere. Assume u(x, 0) = 0, |x| < ∞, and u → 0 as |x| → ∞.
Show that u(x, t) ≥ 0 everywhere on its domain.

9.2 Higher dimensional Cauchy problems

For the case of x ∈ Rn, consider the problem

∂u
∂t

= D∇2u = D
∑n

i=1
∂2u
∂x2i

for x ∈ Rn, t > 0

u(x, 0) = f(x) for x ∈ Rn
(8)

The fundamental solution in 1D, S(x, t), has a direct analogue in higher
dimensions, namely

S(x, t) = S(x1, x2, . . . , xn, t) = 1
(4πDt)n/2)

e−|x|
2/4Dt, where |x| =

√
x21 + x22 . . . x

2
n.

So the solution to (8) is

u(x, t) =

∫
Rn
S(x−y, t)f(y)dy =

1

(4πDt)n/2

∫
Rn
e−|x−y|

2/4Dtf(y)dy1dy2 . . . dyn.

Again considering a Cauchy problem with sources

∂u
∂t

= D∇2u+ F (x, t) , x ∈ Rn, t > 0

u(x, 0) = f(x) , x ∈ Rn .

We now have the analogous solution, again by Duhamel’s principle,

u(x, t) =

∫
Rn
S(x− y, t)f(y)dy +

∫ t

0

∫
Rn
S(x− y, t− τ)F (y, τ)dydτ.

9.3 Duhamel’s principle and the wave equation

Recall the theorem in Section 6.2 that for the forced wave equation
utt = c2uxx + F (x, t) |x| <∞, t > 0

u(x, 0) = f(x), ut(x, 0) = g(x) |x| <∞ ,
(9)
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the explicit solution is given by

u(x, t) =
1

2
{f(x+ct)+f(x−ct)}+ 1

2c

∫ x+ct

x−ct
g(y)dy+

1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
F (y, τ)dydτ .

(10)
This was proved in the appendix 6.3.2 via Green’s theorem. We can obtain
the same result by employing Duhamel’s principle. Consider

vtt = c2vxx + F (x, t) |x| <∞, t > 0

v(x, 0) = 0, vt(x, 0) = 0 |x| <∞
(11)

Obtaining the solution to this problem just means adding on d’Alembert’s
solution to obtain the solution to (9) (namely (10)). Thus, consider the
problem 

wtt = c2wxx |x| <∞, t > 0

w(x, 0) = 0, wt(x, 0; τ) = F (x, τ) |x| <∞
(12)

From d’Alembert’s solution to this homogeneous equation problem,

w(x, t; τ) =
1

2c

∫ x+ct

x−ct
F (y, τ) dτ . (13)

Then, following the same logic as in subsection 9.1,

v(x, t) =

∫ t

0

w(x, t− τ ; τ) dτ =
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
F (y, τ)dydτ , (14)

which agrees with the former theorem.

Exercise: Duhamel’s principle works just as well with first-order hyperbolic
equations. Consider the problem

ut − ux = e−x−t |x| <∞ , t > 0

u(x, 0) = 0 |x| <∞

1. Use Duhamel’s principle1 to obtain the solution to the non-homogeneous
problem.

1Hence, you need to solve the problem wt − wx = 0, w(x, 0) = w(x, 0; τ) = e−x−τ .
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2. Solve the problem via the characteristic equation method discussed in
Section 4 of these Notes. The two approaches should give you the same
answer.
(Ans: u(x, t) = te−(x+t).)
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