9 DMore on the 1D Heat Equation

9.1 Heat equation on the line with sources: Duhamel’s
principle

Theorem: Consider the Cauchy problem

D622+F(xt) on |x| < oo, t>0
(1)
u(z,0) = f(x) for |z| < co

where f and F' are defined and integrable on their domains. Let S(x,t) =

1 —x2 /4Dt ; :
ONETIT be the usual fundamental solution to the heat equation. Then

the solution to (1) is given by

u(x,t):/oo S(x—y,t)f(y)der/O /00 S(x —y,t —7)F(y, 7)dydr

—00

WD £ () dy

2\/ Dt

(2—y)?/4D(t— T)F(y,T) dydr . (2)

t
/0 2\/mD(t —T)

For motivation consider the ODE case of a “forced” IVP:

% +ay = F(t), fort>0,aisa constant 3
y(0) =0

It is straightforward to apply the integrating-factor method, or Laplace trans-
form method to obtain

y(t):/o €_a(t_T)F(7')d7'. (4)

Now consider a one-parameter set of homogeneous equations

d_w =
o taw=0, fort>0 (5)
w(0) = w(0;7) = F(7)
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Here 7 is just a dummy parameter with respect to this problem since the
derivative is respect to t; the solution to this problem, for each 7, is w(t) =
w(t;7) = F(r)e”™. By observation the solution (4) to the source problem
(3) is the integral of the solution w to the homogeneous problem (5) with ¢
replaced by t — 7:

y(t) = /Otw(t—T;T)dT.

Put another way, the solution to the nonhomogeneous equation, with homo-
geneous initial condition, is deduced from the solution to the homogeneous
equation (with appropriately parameterized nonhomogeneous initial condi-
tion). This is Duhamel’s principle, and it is fairly generalizable. So, can this
idea carry over to diffusion equations? From previous work solving the heat
equation problem we know that the problem

wy = Dw,, on |z| <oo,t>0

w(z,0;7) = F(x,7) on |z| < 00
has the solution w(x,t;7) = [*_S(z —y,t)F(y,7)dy
(again, 7 is just a parameter).
Now consider the problem
ut = Dug, + F(z,t) on|z] <oo,t>0
(6)
u(z,0) =0 1in |z| < oco.

By applying the above logic from the ODE case, the solution u(z,t) should
be the time integral of w with ¢ replaced by t — 7:

u(z,t) = /Otw(x,t —7;7)dT = /Ot /_Z S(x—y,t —71)F(y, 7)dydr  (7)

By taking derivatives of (7) it is straight forward to verify that (7) is
a solution to (6). Since (2) represents the solution to (6) plus the solution
to the IVP with homogeneous equation, non-zero initial condition, then, by
linearity, (2) is the sought after solution to (1).

Example 1: Solve

g—?:%—kxt on |z| < oo, t>0
u(z,0) =0 for |z| < 0o
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(z—y)?/4(t—7)

By the theorem, u(z,t) fo e m
Note that, with r = (z — y)/2v/t — T,

yrdydr.

/oo e —(z—y)? /A(t—T) 1 /oo( 2d
= T —2r\v/t—1)e " dr
[e%) 2\/ t—T PN y ﬁ — oo )
v /oo -y zm/w
= — e dr — ——— re
VT ) VT s
=X

since the first integral in the last expression is /7, and the last integral is 0
(the integrand is an odd function on a symmetric interval...or just integrate
it directly by substitution). Hence, u(z,t) = [J ardr = xt?/2.

Example 2: Solve

Gu — 8902 %+ 2zsin(t) on |z| < oo, t >0

u(z,0) = e~*! for |z| < oo
Write u(z,t) = u (z,t) + u (x,t), where u¥ i = 1,2 solve the problems

M) g2y
Qu— = 24" on x| < oo, t>0

uM(z,0) = e~ for |z2| < oo

and

615(;) = ‘921;(;) +2zsin(t)  on |z] <oo,t>0

@ (z,0) =0 for |z| < 0o .

By using the solution representation to the regular (homogeneous) heat
equation Cauchy problem, the reader should verify that

W 6a2t 00 ) —av/t—x/2/t )
ut (x,t) = —={e™ e "dr + e* e "dr}.
\/_ / x/2v/t -

™ avt— 00



For the u® problem, consider the problem

2
Gu — 0 on |z| < 00, t >0

w(zx,0) = 2zsin(7) for |z| < oo.
Again, from the solution to the Cauchy problem, w(z,t) = w(z,t;7) =
2z sin(7). By Duhamel’s principle,

t t
u? (z,t) = / 2z sin(t — 7)dr = 2:0/ sin(t")dt’ = 2x(1 — cos(t)).
0 0

Summary: The point of this section is knowing solution form (2) to the
IVP (1).

FEzercises

1. Consider

w; = Dugy + 3¢~ on |z| < 00, t >0

u(zx,0) = sech(2x) for || < oo

It is rare that the integrals associated with the solution of Cauchy
heat equation problems can be calculated out analytically, so in this
case write out the solution from the theorem without carrying out the
specific integrations.

2. Let F(x,7) be an arbitrary bounded, continuous function on R%. Define

%0 o—(a—y)?/4D(t—7)
v(x,t,7) = / fort >

W, T Sk

Verify that u(z,t) = fot v(x,t, 7)dr satisfies uy = Dug,, + F(x,t).

3. Consider the Cauchy problem

U = Uy — @ ON |z| < 0o, t >0, with a being a constant
u(z,0) = H(z) for |z| < oo, where H(-) is the Heaviside function
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First, solve this using linearity and Duhamel’s principle. Second, solve
directly by finding a transformation that reduces the problem to a
homogeneous heat equation problem.

4. Consider uy = Uy, + F(2,1), |z| < oo, t > 0, where now F(z,t) > 0
everywhere. Assume u(z,0) = 0, |z| < oo, and u — 0 as |z| — oo.
Show that u(z,t) > 0 everywhere on its domain.

9.2 Higher dimensional Cauchy problems
For the case of x € R™, consider the problem

%:Dv%zpzyzl% forx € R", ¢t >0

u(x,0) = f(x) for x € R” (8)

The fundamental solution in 1D, S(x,t), has a direct analogue in higher
dimensions, namely

k2
S(x,t) = S(x1, 22, ..., 2y, 1) = me XI*/4Dt \where |x| = /23 + 23 ... 22.

So the solution to (8) is

uxt) = [ Sy 1y = i [ () dydye . dy

(47TDt)n/2 R
Again considering a Cauchy problem with sources

% — DV2u+ F(x,t), xR, t >0
u(x,0) = f(x), x € R™.
We now have the analogous solution, again by Duhamel’s principle,

u(x,t):/nS(x—y,t)f(y)dy—l—/O /nS(X—y,t—T)F(y,T)dydT.

9.3 Duhamel’s principle and the wave equation
Recall the theorem in Section 6.2 that for the forced wave equation

Ut = gy + F(z,1) |z| < 0co,t >0

u(z,0) = f(2), ur(2,0) = g(x) || < oo,
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the explicit solution is given by

x+ct T+c(t— 7')
u(z,t) = —{f(x+ct)+f(x ct)}+1/ dy+2¢// e y, T)dydTr .

—ct
(10)
This was proved in the appendix 6.3.2 via Green’s theorem. We can obtain
the same result by employing Duhamel’s principle. Consider

Vi = gy + F(x,t) |z| < 00,t >0

(11)
v(z,0) =0,v(x,0) =0 |z| < o0

Obtaining the solution to this problem just means adding on d’Alembert’s
solution to obtain the solution to (9) (namely (10)). Thus, consider the
problem

Wy = C*Way |z| < oo, t >0
(12)
w(z,0) = 0,wy(x,0;7) = F(z,7) |z] < o0
From d’Alembert’s solution to this homogeneous equation problem,
1 x+ct
w(z, t;T) = —/ F(y,7)dr . (13)
20 xr—ct

Then, following the same logic as in subsection 9.1,

t :1:+ct ‘r
v(x,t):/ wiz,t — dT_—// g r)dydr , (14)
0 c(t—7)

which agrees with the former theorem.

Ezercise: Duhamel’s principle works just as well with first-order hyperbolic
equations. Consider the problem

u—uy, =e "t jr|<oo, t>0

u(z,0)=0 |z] < o0

1. Use Duhamel’s principle! to obtain the solution to the non-homogeneous
problem.

—T—T

'Hence, you need to solve the problem w; — w, = 0, w(z,0) = w(x,0;7) = ¢
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2. Solve the problem via the characteristic equation method discussed in
Section 4 of these Notes. The two approaches should give you the same
answer.

(Ans: u(x,t) = te= (@)



